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Motivated by the recent work of Bajer & Moffatt (1990), we investigate the 
kinematics of bounded steady Stokes flows. Specifically, we consider the streamlines 
inside a neutrally buoyant spherical drop immersed in a general linear flow. The 
Eulerian velocity field internal to the drop, known analytically, is a cubic function 
of position. For a wide range of parameters the internal streamlines, hence the fluid 
particle paths, may wander chaotically. Typical Poincare' sections show both ordered 
and chaotic regions. The extent and existence of chaotic wandering is related to (i) 
the orientation of the vorticity vector relative to the principal axes of strain of the 
undisturbed flow and (ii) the magnitude of the vorticity relative to the magnitude of 
the rate-of-strain tensor. In the limit of small vorticity, we use the method of 
averaging to predict the size of the dominant island region. This yields the critical 
orientation of the vorticity vector at which this dominant island disappears so that 
particle paths fill almost the entire Poincare' section. The problem studied here 
appears to be one of the simplest, physically realizable, bounded steady Stokes flows 
which produces chaotic streamlines. 

1. Introduction 
In recent years the kinematics of mixing has been a topic of widespread interest 

in the fluid dynamics community. Emphasis has focused on the development of a 
detailed understanding of several prototypical flows. Examples include the flow due 
to two blinking vortices (Aref 1984) and the two-dimensional flow fields generated by 
time-periodic motion of either eccentric cylinders (Aref & Balachandar 1986), or the 
sidewalls of a cavity flow apparatus (Leong & Ottino 1989). Current research 
emphasizes the close connection of the fluid dynamical problem with the mathematics 
of dynamical systems theory and chaos. The reader interested in the ubiquitous 
character of mixing flows and chaos is referred to Ottino (1989). 

The majority of papers studying the kinematics of mixing have examined two- 
dimensional time-periodic motions. Indeed, the Hamiltonian structure of the two- 
dimensional flow problem facilitates analytical and numerical study (e.g. Rom- 
Kedar, Leonard & Wiggins 1990), as well as a detailed comparison between 
experiment and theory (Swanson & Ottino 1990). However, it is also known that 
three-dimensional steady flows can produce chaotic particle paths ; the ABC flow 
(Dombre et al. 1986), which is a steady, space-periodic velocity field satisfying the 
inviscid Euler equations, is perhaps the best known example. The streamlines in the 
ABC flow are in general unbounded and the streamline chaos appears as particle 
paths which sample a large region of characteristic cross-sectional planes of the flow. 
Two other steady flows with unbounded chaotic streamlines are the so-called 
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partitioned pipe mixer and the helical annular pipe mixer, which, typically, are 
modelled using the steady Stokes equations (Ottino 1989). 

Very recently, Bajer & Moffatt (1990) gave the first example of a bounded steady 
three-dimensional Stokes flow with chaotic streamlines. They considered the most 
general quadratic velocity field inside a sphere, a mathematical problem motivated 
by applications in dynamo theory. Their example illustrates the (often overlooked) 
fact that streamlines need not be closed, even though the flow is bounded, steady, 
and divergence-free ( V - u  = 0). 

In  this paper we extend the work of Bajer & Moffatt by considering the natural 
physical problem of a neutrally buoyant spherical drop immersed in a general linear 
steady Stokes flow. In  this case, the external flow field is characterized by the 
vorticity vector and the rate-of-strain tensor. The velocity field internal to the drop 
is known analytically and is a cubic function of position. Using this exact solution, 
we demonstrate that streamlines wander chaotically inside the drop for a wide range 
of parameters. 

It may seem surprising that this simple steady Stokes flow can produce chaotic 
particle paths, since, after all, Stokes equations are linear equations for the velocity 
field. However, here it is important to distinguish between dynamics and kinematics. 
The motion of a spherical drop in a steady linear flow is a dynamical problem where 
the velocity field depends linearly upon the external forcing, say the rate-of-strain 
tensor and the vorticity vector. Simultaneously, the associated kinematical problem, 
describing the evolution of the particle paths as a function of time, is three- 
dimensional and nonlinear, hence may lead to chaotic particle trajectories. It is this 
feature of the Stokes flow problem investigated here, i.e. linear dynamics and 
nonlinear kinematics, which may appear to be contradictory a t  first sight. However, 
these are really two distinct aspects of the same problem. 

Perhaps most importantly, in this work the equations describing fluid particle 
trajectories have a very simple structure and so may prove useful in further studies 
of the transport characteristics internal and external to droplets in flow. A related 
study has already been undertaken in the context of electromagnetic stirring 
(Moffatt 1991). Finally, the equations introduced in this paper possess a rich 
dynamical structure and are therefore interesting to study in their own right. 

2. The flow field 
Consider the flow field due to  a spherical drop, density 6, viscosity ji, suspended in 

a Newtonian fluid with density p and viscosity p. Choose a coordinate system moving 
with the centre-of-mass velocity of the drop and assume that the interfacial tension 
is sufficiently large to maintain a spherical drop shape. Far from the drop the fluid 
is assumed to undergo a steady general linear motion uoo(x) = U + @  h x + E . x ,  
where x is the position vector measured from the centre of the drop, o is the vorticity 
vector and E is the symmetric, traceless rate-of-strain tensor of the undisturbed 
motion. This description of the local flow field about a drop is a good approximation 
for those fluid motions where the drop radius a is much smaller than the typical 
lengthscale characteristic of velocity gradient variations in the bulk flow. Hence, a t  
least in principle, this model flow provides the starting point for a local description 
of mixing in a multiphase dispersion of droplets. 

It is straightforward to solve the steady incompressible Stokes flow problem for 
the velocity field internal and external to a drop satisfying the boundary conditions 
of continuity of velocity and continuity of tangential stress. (The normal stress 
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balance is not imposed because the drop is assumed to have a spherical shape.) For 
the case of a neutrally buoyant drop (ji = p ) ,  which translates with the local fluid 
velocity U but cannot deform exactly as a fluid element, the velocity field internal 
to the drop is given exactly by 

[ (5r2 - 3 )  E .  x - 2 x x - E .  x] + $ A x. 
1 

u(x )  = ~ 

2(1+A) 

Here all lengths have been non-dimensionalized by the drop radius a and velocities 
have been non-dimensionalized by Ga where G is a typical shear rate of the flow. In 
(l) ,  h = ,k/p is the viscosity ratio of the two fluids and r2 = x-x. A brief derivation 
of this equation is given in Appendix A. 

The fluid particle paths, which coincide with the streamlines (and streaklines) 
for this steady flow, follow from the solution of the autonomous, volume-preserving 
(Veu = 0) system of equations 

dx 
- = u(x ) .  
dt 

As is common in fluid dynamical problems, the phase space is simply the physical 
space corresponding to the fluid particle location. 

The two terms in ( 1 )  account for (i) stretching and contraction of fluid elements 
owing to the straining part of the flow and (ii) the local rigid body rotation of fluid 
elements. Taken individually, these terms produce flows with closed streamlines. 
However, the two contributions, acting together, generally produce chaotic 
streamlines. This will be shown in §§3 and 4 where we use (1) to investigate the 
possible particle paths for the general class of linear external motions described 
above. Previously, the solution ( 1 )  has been used to study the deformation of viscous 
drops. 

For completeness we note that the most general linear flow also includes a 
translational term if the drop is acted upon by an external force (e.g. gravity). In this 
case the drop translates at velocity U,, in a flow with local fluid velocity U. The 
internal velocity field then includes the contribution 

u- UD -. [ (2r2-  1 )  I - x x ] .  
2 ( l + h )  ( 3 )  

The slip velocity U -  U,  is proportional to the density difference between the two 
phases : 

where the appearance of the shear rate G serves as a reminder that ( 3 )  is 
dimensionless. Equation ( 3 )  is the well-known Hadamard-Rybczynski solution for 
the internal fluid motion of a sedimenting drop. 

Of course, the general situation of relative translational motion in the presence of 
shear, equations (1) and ( 3 ) ,  may also be studied. However, some preliminary 
calculations suggest that the structure of the Poincar6 sections is similar to figures 
3 4  and so we have not investigated this more complicated problem further. 

u- UD = [2(1+ h ) / ( 3 ( 2  + 3 h ) ) l ( b - p )  a2g/YG, 

3. Neutrally buoyant drop in a linear flow 
We consider the case of a neutrally buoyant drop in a linear flow. From the 

kinematical point of view it is possible to eliminate the viscosity ratio h via a simple 
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FIGURE 1.  Drop in a linear flow. Coordinate system aligned with the principal axes of E.  

rescaling of (1). If we denote a solution of ( l ) ,  corresponding to the initial condition 
X ,  as x ( t , X ; w ,  E, 1 + A ) ,  then we see that 

1) = x ( - - . X ; ( l + h ) w , E . l  t 
l + h  

x ( t , X ; o , E , i + A )  = X  t , X ; m , -  ( l + h '  

Hence, for any choice of viscosity ratio, the particle trajectory corresponding to a 
given initial condition X may be found from the h = 0 solution to (1)  by either 
rescaling time and the magnitude of the vorticity or, alternatively, by rescaling the 
rate-of-strain tensor. Physically this simple interpretation implies that an identical 
'degree of mixing' (i.e. the same solution trajectory) is obtained as the viscosity of 
the drop phase is increased by requiring a mixing time longer by a factor of 1 + h and 
simultaneously changing the velocity gradient so that the vorticity is reduced 
relative to the rate-of-strain tensor by the factor 1 + A .  Therefore, for the remainder 
of the discussion we confine attention to the third-order dynamical system 

dx 
dt (5 )  _ -  - i [ (5r2-  3)  E .  x - 2xx. E .  x ]  + + A x .  

3.1. Parameter space of the $ow 
The internal flow field is specified completely by the vorticity vector o and the 
symmetric traceless rate-of-strain tensor E of the external motion. It proves 
convenient to  choose a coordinate system specified by the principal axes of E so that 

0 
E = +  0 E,, 0 (1' 1 - (E, ,+E, , )  

where we have assumed El , ,  E,, 2 0. The external flow with inflow along the z-axis 
and outflow in the (x, y)-plane is shown in figure 1 .  Since the equations are invariant 
with respect to the interchanges t + - t ,  E + - E, and o +-a, no generality is lost in 
the kinematical discussion by only focusing on the + sign in (6). 
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For simplicity we choose E,,+E,, as the characteristic velocity and let a = 
E22/El l .  In dimensionless terms 

Hence, in Cartesian coordinates, the dynamical system for investigating fluid 
particle motion takes the dimensionless form? 

The parameter space to be studied can be reduced by noting that (8u-c) are 

(i) The equations are invariant with respect to 
invariant with respect to several variable transformations : 

x-fy,  y+x,  a+l /a ,  o =  (w, ,wy,w, )+( -wy, -w, ,  - w z ) .  

Hence, no generality is lost in restricting 0 < a < 1. 
(ii) The equations are invariant with respect to 

x-f-x, wy+-wy, w,+--w,. 

Hence, it is sufficient to restrict attention to w, 2 0. 
(iii) The equations are invariant with respect to 

z+-z,  w x - f - w z ,  wy+-wy. 

Hence, it is sufficient to study wy 2 0. 
We note that the special case of simple shear flow corresponds to a = 0, 

o = (0, w ,  0). One can show that in this case (8a-c) are completely integrable. Hence 
this highly symmetric velocity field has a very simple, non-chaotic streamline 
structure. 

It is also necessary to specify three parameters describing the orientation of the 
three orthogonal principal axes of E. However, this relative orientation is only 
important for non-spherical shapes and, since here we are only concerned with 
spherical drops, it is sufficient to suppress dependence on the orientation parameters 
(Batchelor 1979). 

It is now clear that the flow is completely specified by four parameters : a and three 
components of o, with the restrictions discussed above. There are perhaps other 
useful representations of the flow possible, but the above description has proven to 
be convenient for our presentation and discussion. 

t Equations with a similar cubic nonlinearity have been investigated in the context of 
electromagnetic stirring (Moffatt 1991). 
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FIGURE 2. Streamlines inside the drop, o = 0. The streamsurfaces form a nested family of tori, 
shown here in cross-section. The filled circles denote saddle fixed points and the asterisks denote 
elliptic fixed points. 

3.2. Geometry of the flow 

In this paper we will study chaotic streamlines for the specific case of a = 1, 
(axisymmetric E).  To develop intuition about the geometry of the flow, we discuss 
three cases : (i) w = 0;  (ii) w aligned along the z-axis ; and (iii) w oriented off the z-axis. 

If w = 0, the overall flow is axisymmetric and a stream function I) exists. In  
spherical coordinates ( r ,  8, $) the stream function is given by 

+@, 8) = %r3(r2 - 1) sin2 8 cos 8. (9) 

The internal streamlines for this flow are sketched in figure 2. The streamsurfaces, 
$ = constant, form a nested family of tori. Particles move along closed paths in 
cross-sectional planes of constant g5. A circle of elliptic fixed (stagnation) points lies 
a t  the centre of the nest, here denoted by *. This elliptic stagnation circle plays a 
prominent role in the averaging calculation presented in 8 4.2. 

For the case where the vorticity vector w is aligned along the z-axis, the 
streamsurfaces + = constant are still given by (9). However, the particle paths now 
evolve according to $(t) = wt++, and so may densely cover a streamsurface, 
depending on the magnitude of the vorticity. 

The flow becomes much more complicated when w is off the z-axis. It is only in this 
case that chaotic streamlines can occur. We will explore this both numerically and 
analytically in $4. 

The underlying cause of the chaos can be traced back to geometric structures 
present in figure 2, the case w = 0. In the language of dynamical systems theory, 
there is a saddle fixed point a t  the origin (this is a stagnation point of the flow). The 
poles are also saddle fixed points. In addition, there is a ring of saddle fixed points 
along the equator. A very important role is played by trajectories that connect 
saddle points; such trajectories are known as heteroclinic orbits. For example, in 
figure 2, heteroclinic orbits connect the origin to  the pole, the pole to the equator, and 
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the equator back to the origin. Taken together these heteroclinic orbits form a 
heteroclinic cycle. Perturbations of such cycles provide a classic mechanism for the 
generation of chaos (Wiggins 1988) ; this appears to be the case when w is off the 
z-axis. 

In the numerical investigation presented below, the effects of changing both the 
orientation and the magnitude of w will be studied independently. Because OL. = 1 
corresponds to an axisymmetric flow, we will take w = (w,,O,w,)  without loss of 
generality. The orientation of w ,  measured from the z-axis in the (2, 2)-plane, will be 
denoted by 0. 

The particle paths are computed by numerically solving (8) using both a fourth- 
order Runge-Kutta method and the Bulirsch-Stoer method (Press et al. 1986). All 
calculations are performed using double precision and the numerical integrations are 
checked by comparing the two methods and by decreasing the time-step. 

To describe the three-dimensional particle paths we present Poincare' sections 
through the distinguished plane in the flow, namely the (z, 2)-plane containing the. 
z-axis and w .  In  this case, when w = 0, E =+ 0, closed streamlines lie in the plane ; if 
E = 0, w =!= 0, closed circular streamlines intersect the Poincare' section in exactly two 
points (we are counting intersections from both sides of the plane). Other plane 
sections yield similar qualitative behaviour. Note that Poincar6 sections provide 
only a qualitative characterization of the flow; in particular, they provide no 
indication of the actual time evolution of a passive tracer in the flow. 

4. Results and discussion 
4.1. Numerical results 

We begin by examining the case 8 = 0.2757~ and 101 = 1.5 illustrated in figure 3. Most 
of the Poincare' section is covered by a single trajectory whose initial condition is near 
the origin. This trajectory corresponds to a chaotic streamline. There are also four 
large island structures, which occur in pairs, since they are actually cross-sections of 
toroidal flow regions (one pair is labelled A). To probe the structure of the unlabelled 
pair of islands, we use four different initial conditions inside the island. The 
trajectories appear as concentric curves in figure 3 (a ) .  

A more detailed view of an island is shown in figure 3 ( b ) .  Particle paths which 
begin in the island region remain there for all time and typically remain on a toroidal 
surface, as suggested by the Poincare' section. The pattern is relatively simple near 
the centre of the island, but begins to break down as the chaotic region is approached, 
leading to a highly structured region of intertwined islands. The phase portrait 
exhibits KAM behaviour familiar from the theory of nearly integrable Hamiltonian 
systems (Lichtenberg & Lieberman 1983 ; Ottino 1989). 

Notice that there is a sparse diagonal strip in figure 3 (a). This sparseness is easily 
explained since the strip is aligned along the vorticity vector. For any point x 
parallel to w ,  w h x = 0, so the flow is entirely due to E. Flow due to E only generates 
motion in  the Poincar6 plane and not transverse to the plane. Hence, whenever a 
typical trajectory finds itself in the neighbourhood of w ,  it has a very small velocity 
component transverse to the plane, and therefore rarely intersects the strip. The 
same phenomenon has been discussed by Dombre et al. (1986). 

The particle paths that begin near the origin in figure 3 sample a large fraction of 
the sphere volume. The chaotic character of this motion may be verified by 
demonstrating the sensitive dependence on initial conditions, manifested by 
exponential divergence of nearby trajectories. We have performed these standard 

21 FLM 232 
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FIGURE 3. A typical Poincark section, Iw( = 1.5,8 = 0 . 2 7 5 ~ .  (a) A single chaotic trajectory with 
initial condition near the origin covers most of the section. The symbol A labels one pair of islands 
belonging to the same torus. The inner structure of the unlabelled pair of islands is also shown. (b )  
Detailed structure of one of the islands. 

calculations and found that there is a continual exponential separation of two nearby 
particles, characteristic of a chaotic dynamical system, until the upper bound of the 
drop diameter is reached. 

We next examine the Poincare section for a fixed orientation of the vorticity 
vector, but an increasing magnitude of the vorticity. Figure 4 shows simulations for 
an orientation 0.27~ = 36" from the z-axis. In each Poincard section, a single particle 
trajectory, with initial condition near the saddle point a t  the origin, samples a large 
portion of the plane. In a few of the figures, the structure internal to the islands is 
shown also. For small magnitudes of o (figure 4a, b )  the streamline pattern has four 
large island regions similar to figure 3. As the magnitude of o increases towards O( l) ,  
islands are created and destroyed until a t  101 = 1.4 a single streamline appears to fill 
much of the Poincar6 plane. Further increases in IwI lead to very complicated 
patterns filled with intertwining islands and chaotic regions, and the chaotic regions 
become progressively smaller with further increases in the magnitude of o. 

We now study the dependence of the Poincark sections on the vorticity orientation 
0. Figure 5 shows the case where the magnitude of the vorticity vector is small, 
101 = 0.1. Figure 5(a )  illustrates that for 0 near zero (orientations almost vertical), 
the chaotic particle paths are confined to very narrow regions about the z-axis, the 
surface and the equator. As 0 is increased, the chaotic region increases monotonically 
and the islands shrink. As the orientation approaches and then exceeds 0 z 0 . 3 ~  
(figure 59, h) the streamline is able to sample almost the entire cross-sectional plane 
and so practically fills the entire volume of the drop. We have been careful to say 
'practically ' since, strictly speaking, we cannot exclude the presence of stable 
periodic orbits with very high period. The islands corresponding to such orbits would 
have very small cross-section and hence would be hard to detect. Thus, we will 
confine our discussion to the 'dominant islands' in the Poincard section. 

Using the method of averaging in the limit of (01 < 1, it is possible to develop a good 
qualitative and quantitative understanding of the streamline structure illustrated in 
figure 5 .  Specifically we find that the critical orientation for the destruction of the 
dominant island is given by 0 = cot-' 1/2/2 = 0 .304~ .  This analysis is presented in 
54.2. 

An important qualitative feature of figure 5 is the appearance of chaotic 
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FIQURE 4. The effect of changing the magnitude of the vorticity, 0 = 0.27~ (a-k) IwI = 0.1, 0.5, 
1.0, 1.13, 1.17, 1.25, 1.4, 1.75, 2.5, 4.0, 8.0 respectively. 

trajectories for small magnitudes of vorticity, even at  orientations almost, though 
not exactly, aligned along the z-axis (figure 5a-c). The existence of the chaotic 
trajectories is a consequence of the heteroclinic cycle carrying particles away from 
the origin and then back to the neighbourhood of the origin. As mentioned above, 
perturbations of heteroclinic cycles, here due to off-axis vorticity, are ideal candidates 
for generating chaos (Wiggins 1988). 

For larger magnitudes of the vorticity vector, the streamline structure is modified, 
actually becoming qualitatively much more complex. In figure 6 we present results 
of changing the orientation of the vorticity vector for 10) = 2. In figure 6(a,  d ,  e ,  1 )  we 
also show the inner structure of the islands. Once again, for orientations almost 
aligned with the z-axis, the particle paths are confined to the regions close to the z- 
axis, the surface and the equator (figure 613, b). However, in figure 6(c),  for 8 = 

21-2 
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FIGURE 5. The effect of changing the orientation of the vorticity vector, IwI = 0.1. 
(a<) 8 = O.OOlx, O.Oln, 0.111, 0.17n, 0.25n, 0.27n, 0.297t, 0.33311, 0 . 4 ~  respectively. 

0 .0067~ ,  we see that a bifurcation has already occurred so that a streamline which 
begins near the origin is able to penetrate, and thus break, part of the island 
structure. A series of bifurcations then continues to occur as the orientation is 
increased further until the particle path samples almost the entire Poincar6 plane at  
an orientation 0 = 0 . 1 ~  (figure 6g). Further increases in 0 lead to a complicated 
phase portrait with many subregions which are connected by toroidal substructures. 
This is vividly illustrated in figure 6(1). 

4.2. Analytical study of small 101 via the method of averaging 
In this section we apply the method of averaging to understand the phase portrait 
in the limit of small 101. Numerical results for Iw1 = 0.1 were shown in figure 5. 

As discussed in $3.2, when w E 0 the particle paths may be described in spherical 
coordinates by a stream function $ ( r ,  8) .  Then, motion is confined to the intersection 
of planes 4 = constant and toroidal surfaces 9 = constant. However, when 101 4 1 a 
fluid particle executes a slow winding motion about the z-axis and simultaneously 
may cross onto surfaces specified by different values of $. In  such instances it is 
convenient to specify the particle location inside the spherical drop by the three 
independent variables ~ ( t ) ,  8( t )  and $( t ) .  It follows that for Iwl 4 1 the variables 4 
and $ vary slowly as a function of time while 8 varies rapidly. The method of 
averaging (Sanders & Verhulst 1985) may be used to examine the evolution of the 
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FIQIJRE 6. The effect of changing the orientation of the vorticity vector, = 2.0. (a-2) 8 = O.OOln, 
O.O02n, 0.0067~, O.Olx, 0.02n, O.O6n, O.ln, 0.2q 0.3n, 0 . 3 5 ~ ,  0.4x, 0 . 4 8 ~  respectively. 

particle path in terms of the two slow variables $,$. As we illustrate below, the 
averaging calculation predicts the orientation of o a t  which the islands are destroyed 
and predicts the approximate size of the islands shown in figure 5.  

We consider the case 101 < 1 by perturbing the equations of motion about the 
elliptic stagnation circle of the o = 0 motion (see asterisks in figure 2). This choice 
is natural because the stagnation circle is at the centre of the toroidal islands shown 
in figure 5 ;  in a qualitative sense, the neighbourhood of the stagnation circle is the 
most regular region of the flow and the farthest from the chaos. 

The derivation of the averaged equations is given in Appendix B. Here we simply 
begin with the averaged equations, which are two coupled equations describing the 
evolution of the particle path in terms of the averaged variables $ and q5. (As is 
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common in averaging calculations, we use the same symbol for a quantity and its 
average.) Instead of @, however, it is convenient to  introduce the new variable x, 
which is zero a t  the location of the elliptic stagnation circle and measures the 
distance, in terms of the stream function, from the stagnation circle. The largest 
value of x is x = 1 which occurs on the z-axis, the surface and the equator. The 
averaged equations have the form 

where 0 < x < 1, - n: < q5 < 7c and the slow time 7 = w, t .  Here we have also defined 
the orientation parameter as p = w,/w, = cot 0. 

Now we analyse the phase portrait for the averaged system (lo), as a function of 
the orientation paramet'er p. Since x is a real number and $ is an angle, it is most 
natural to use a cylindrical phase space, with x increasing along the length of the 
cylinder and $ increasing around it. We will plot the phase portrait for all values of 
x between 0 and 1, although the picture is expected to be strictly valid only for x near 
0, since a perturbation expansion about x = 0 was used to  derive the averaged 
equations. (For example, an unphysical feature of the averaged equation (lOa, b )  is 
the prediction of a source and sink on x = 1, whereas the actual flow is 
incompressible. ) 

The averaged system (10) has a very important symmetry: the equations are 
invariant under the transformation T + - T ,  $+-$. This means that (10) is an 
example of a 'reversible' dynamical system (Tsang et al. 1991). Such systems are 
known to have many special properties ; in particular they have much in common 
with Hamiltonian systems. As will be seen below, reversibility imparts a symmetrical 
appearance to the phase portraits: the upper half of each figure is the same as the 
lower half, but with all arrows reversed (see figure 7). 

Figure 7 ( a )  shows the phase portrait for Q 4 2  > p > Pcrit = l /d2 .  There are three 
fixed points: a saddle point a t  x = S(42p-  l), $ = 0 (denoted by @), and a stable 
and unstable fixed point on the circle x = 1. Furthermore, the circle x = 0 is a closed 
trajectory. The most important feature in figure 7 ( a )  is a homoclinic orbit that leaves 
the saddle point 8, flows towards x = 0, loops around the back of the cylinder, and 
then returns to the saddle. Using the reversibility symmetry, one can prove that this 
homoclinic orbit traps a band of closed orbits between itself and x = 0. In  particular, 
any trajectory which starts near x = 0 is confined to that vicinity for all time. 

To interpret these results physically, recall that x = 0 corresponds to the central 
stagnation circle inside the toroidal streamsurfaces of figure 2. Thus, the band of 
trapped orbits in figure 7 (a )  corresponds to  a tube of particle paths that remain near 
the stagnation circle forever. In  other words, figure 7 (a )  provides a simple theoretical 
explanation of the ordered island regions in the original flow. 

In contrast, trajectories starting outside the homoclinic orbit in figure 7 ( a )  may 
move towards it initially, but eventually are sent back out to large values of x w 1 .  
Physically this means that the corresponding particle paths move away from the 
ordered region and towards the drop surface or equatorial plane. In  the unaveraged 
flow, such large excursions are associated with chaotic streamlines. 

As /3 approaches /Ierit from above (0 moves from the z-axis towards the equator), 
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((I) 

Homoclinic orbit 

- - + = o  

x = o  

x = o  x = I  

- - + = o  

x = o  x = I  
FIGURE 7 .  The cylindrical phase portraits corresponding to the averaged system of equations. 

(a)  Qd2 ’ P ’ A,,, = 1/dZ ( b )  P = P C , , ,  = (4 B < P c r w  

the homoclinic orbit tightens like a noose around the circle x = 0. Physically this 
means that the ordered region in the flow shrinks to zero. Figure 7 (b )  shows the phase 
portrait a t  /3 = Pcrit = 1 / 4 2 .  The saddle point now occurs on the circle x = 0, and 
there is no longer a region of confined trajectories. Finally, for P < Bcrit (figure 7c) ,  
the saddle point splits into two saddles, but the qualitative result is the same: the 
ordered region of figure 7 ( a )  is destroyed. 

Thus, for small (01, the method of averaging predicts that the dominant ordered 
region will disappear at a critical orientation 0 = cot-’ pcrit = 0.304~. This prediction 
agrees with the numerical results shown in figure 5.  

The method of averaging also predicts the variation in thickness of the dominant 
toroidal structure. The homoclinic orbit in figure 7 (a)  moves from a maximum x of 
8(2/2/3- 1 )  at 4 = 0 to values close to x = 0 at q5 = A. Physically this implies that the 
island region is a tube of non-uniform cross-section: it is thickest at  q5 = 0, and 
narrowest at  4 = A. This prediction also agrees with the numerics. In  addition, the 
prediction of a maximum x = 8(1/2/3- 1 )  has been checked numerically and is in 
good agreement for /3-pcrit < 0.03. 
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5. Conclusions 
In summary, we have described chaotic wandering of streamlines for the simple 

physical flow problem of a neutrally buoyant spherical drop in linear external Stokes 
flows. The kinematics are dictated completely by the magnitude of the vorticity 
vector and the orientation of the vorticity relative to the principal axes of the rate- 
of-strain tensor E. The viscosity ratio of the two fluids plays no direct role. In the 
limit of small 101 the method of averaging predicts both the size of the dominant 
islands and the onset of chaos. Several interesting questions remain, including the 
study of non-axisymmetric E, a + 1, and implications of the chaotic particle paths 
for transport enhancement. 
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Appendix A. A brief derivation of the Stokes velocity fields 
In this Appendix we present a brief derivation of the equations describing the 

motion of a spherical drop in a linear velocity field at low Reynolds numbers. The 
dimensionless governing equations for the velocity and pressure fields (ue, p") in the 
external suspending fluid and in the drop fluid (u,p) are 

V2U" = wpe, v2u = vp, w.ue = 0, v - u  = 0. 

Assuming that the drop remains nearly spherical, the boundary conditions of 
continuity of velocity and tangential stress are applied on the undeformed spherical 
surface and may be written 

ue(x)  = U ( X )  on P =  1, (A 2 4  
t.(n. T e - h n . T )  = 0 on P = 1, 

where T is the stress tensor, T = - p i +  Vu+ ( V U ) ~ ,  and n,  t are the unit normal and 
tangent vectors to the interface. The normal stress balance is not imposed here since 
the drop shape is taken to be spherical. However, the small shape distortions 
generated by viscous stresses may be calculated using the normal stress balance once 
the velocity and pressure fields are known. Far from the drop the flow tends to the 
undisturbed motion ue +um(x) = U- U,  +&o A X +  E - X ,  where Uis the undisturbed 
velocity at  the centre of the drop and U,, is the translational velocity of the drop. 
Because of the linearity of the spherical drop problem, the solutions corresponding 
to the forcings U -  U,, o and E may be studied independently and then superposed. 

There are several methods for representing the solutions to Stokes flow problems 
with spherical geometries in terms of spherical harmonic eigenfunction expansions. 
In our work we have found an invariant vector method described by Hinch (1988) 
to provide a compact and very useful representation for the velocity fields. A detailed 
example illustrating the vector invariant solution method, closely related to the 
problem studied in this paper, is described by Nadim & Stone (1991) in the study of 
particle and drop motion in a quadratic undisturbed velocity field. 

The solution for the external and internal velocity fields in the case of a translating 
drop in a quiescent fluid ( U -  V, + 0, o = 0, E = 0) is given by Batchelor (1967). For 
the case of a neutrally buoyant drop, which is the primary interest in this paper, the 
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drop moves with the local fluid U =  U,,, so that the velocity fields internal and 
external to the drop depend linearly on o and E. In this case, the velocity and 
pressure fields may be written 

and u(x )  = c1 w A x + 2c2 E -  x + 6c,(5r2E. x - 2 x . E - x x ) ,  (A 4 4  

P ( X )  = p , + 1 2 6 ~ , ~ . E . ~ .  (A 4b) 
The reference pressures p ,  and p, differ owing to interfacial tension. The six 
unknown constants c:, c i ,  c;, c l ,  c2, c3 are determined by applying the boundary 
conditions (A 2) .  After some algebra, one finds 

9 I 

Substitution of these results into (A 4a) yields ( l ) ,  which is the starting point for 
much of the work discussed in this paper. 

Appendix B. The averaging calculation for small 101 
In this Appendix we describe the application of the method of averaging to  the 

dynamical system (8). The analysis assumes that the magnitude of the vorticity is 
small. A detailed derivation is given of the equations presented in 54.2. This 
application of averaging is in the same spirit as that described by Bajer & Moffatt 
(1990), though the simplicity of the equations here allows for more analytical 
progress. 

It is natural to use spherical polar coordinates ( r ,  0, 4) to follow the motion of a 
fluid particle. Equations (8) may then be written 

dr 
- = + ( r 2 - 1 ) ( i - 3 c o s 2 $ ) ,  dt 

= i(5r2 - 3) sin 8 cos 0 - +x sin 4, d$ 
dt 
- 

dt 2 1 
It is convenient here to use the stream function $(r ,  0) = +r3(r2- 1) cos $sin2 8, as 

a dependent variable instead of the radial coordinate r .  Although a stream function 
only exists in the case of zero vorticity or the special case of the vorticity vector 
aligned along the z-axis, for more general flows $ simply defines the streamsurface 
of the undisturbed motion (see figure 2 )  upon which a particle lies a t  time t .  Since 

d$ dra$ d$a$ +-- 
dt dt ar dt a$ 
_ -  --- 



644 H .  A .  Stone, A .  Nadim and S. H .  Strogatz 

an equation for d$/dt follows from (B 1 a, b) .  So we now consider particle trajectories 
($ ( t ) ,  + ( t ) ,  6( t ) )  determined by the set of equations 

9 =+,sin+[ 1 -3 COS' 6 I$, 
dt cos 6 sin 0 

w, sin0 

- 35r2 -3) sin 0cos e-& sin +. de 
dt 
_ -  

For small magnitudes of the vorticity 101 4 1, i t  is clear from (B 2 )  that variations 
in 6 occur on an O( 1) timescale, the fast time, while variations in $ and + occur over 
the much longer timescale O( l/lcol), the slow time. An approximate description of the 
motion may then be constructed using a multiple timescales analysis. Here we 
outline the first term of such a perturbation expansion. The idea is to average the 
original equations over the fast O( 1) timescale to yield a simpler set of two equations 
valid on the longer O(l/lcol) timescale where noticeable changes in $ and + occur. As 
is customary in this type of calculation we do not use a separate symbol for the 
averaged quantities. Hence, from now on $ and + denote their averaged values. 

The time-averaged form of (B 2 )  is given by 

i-3cos2e 
-- " - i s in+(  ) $, dr  cos 6 sin 0 

_ -  

where r = w,t is the slow timescale, and the time average of a quantity h is defined 
as 

1 +9- 
@) ( t )  = h ( 4  ds, (B 4) 

where F is the period of the rapid 0 motion evaluated in the limit 101 = 0. 
To determine the relevant time averages in (B 3), numerical calculations could be 

performed over typical closed orbits inside the spherical drop. However, in the zero 
vorticity limit there is an elliptic point, coordinates ( T o ,  8,) = (dg, COS-~  l/v'3), a t  the 
middle of the central-most torus (denoted by an asterisk in figure 2). Furthermore, 
as seen in figure 5 ,  the neighbourhood of this circle of points is the last remaining 
island region of the flow. So, we proceed by perturbing the equations of motion about 
( T o ,  0,) and then determine the motion of e ( t )  in this neighbourhood. We are then able 
to analytically determine the time averages in (B 3). 

B. 1. Perturbation expansion in the neighbourhood of the elliptic stagnation circle 
To evaluate the time averages, consider the flow in the absence of vorticity, where 
the particle trajectory equations are (B 1 a, b) with o = 0. These equations are solved 
via a perturbation expansion about ( T o ,  8,) using the Poincar6-Lindstedt technique. 
Measuring the displacement from the fixed point by E ,  let 

with 

r ( t )  = r ,+sr , (T)+s2r , (T)+.  . . , 
e(t)  = 8, + €8, ( T) + E2e,(T) + . . . , 
T = w ( E ) ~  = ( W , + E W ~ + O ( E ~ ) ) ~ .  
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Substituting into (B l a ,  b) and collecting like powers of E leads to 

dr  -2/6 do, - 5 3 
O ( s ) :  - el, -- dT - 2/6r1' w o = 1 / 5 ;  

d T - 5  

cos2T, w1 = 0, (B 6b)  sin2T+- 
4 4 2  

5 d20, 1 1 
o ( E 2 ) :  -+I9 - 

dT2 '-41/2-1/10 
where w1 is set equal to zero to  eliminate secular terms. Solving these equations 
subject to the initial conditions O(0) = O,+s and r ( 0 )  = ro leads to the solution 

( B  7 a )  
4 6  O,(t)  = cos T, rl(t) = --sin T, 
5 

sin2T-- cos2T. (B7b)  sin T+-+- 
42/2 32/10 

1 2 1 1 
12 2/2 

02(t) = -COS T-- 
6 2/2 32/10 

With the approximate representation for O(t), it is now possible to  compute the 
time averages defined by (B 4). The period F of the O(t) motion, expressed in terms 
of T, is Y = 2 ~ .  The symbolic manipulation package Mathemutica is used to check 
the algebra. We find 

and 

Finally, i t  is necessary to  relate the perturbation parameter E ,  measuring distance 
from the fixed point (To,  do) ,  to the slow variable $. To see this more clearly, expand 
$ ( r ( t ) ,  O(t)) about (ro,  OJ. This yields 

3 
25 4 5  

[i - 3 E 2  + 0(€3)1 ,  $(m W)) = -- (B 9) 

so that at leading order, when averaging over the fast time, 

Substituting (B 8) and (B 10) into (B 3) the averaged equations take the form 

(B l la )  

(B l i b )  

where /.? = o,/w,. Introducing the variable x = 1 +252/5$-/3, which measures 
distance from the elliptic fixed point, we finally arrive at 

(B 12a) 

(B 12b) 
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By construction, x = 0 at the fixed point (ro,O,,) and x = 1 at  31. = 0, which 
corresponds to the z-axis, the drop surface and the equator. Equations (B 12) are the 
starting point for the analysis of the island size and the onset of chaotic particle 
trajectories presented in s4.2. 
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